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The perfectly matched layer (PML) technique is developed in the context of a high-
order spectral-element Discontinuous–Galerkin (DG) method. The technique is applied to
a range of test cases and is shown to be superior compared to other approaches, such as
those based on using characteristic boundary conditions and sponge layers, for treating the
inflow and outflow boundaries of computational domains. In general, the PML technique
improves the quality of the numerical results for simulations of practical flow configurations,
but also exhibits some instabilities for large perturbations. A preliminary analysis that
attempts to understand the source of these instabilities is discussed.

I. Introduction

The numerical simulation of unsteady aerodynamic flows of practical interest involves discretized com-
putational domains that often must be artificially truncated. Appropriate boundary conditions are required
at these truncated domain boundaries. Ideally, these boundary conditions should be perfectly “absorbing”
or “nonreflecting” to ensure that they do not contaminate the flow field in the interior of the domain. The
proper specification of these boundary conditions is critical to the stability, accuracy, convergence, and qual-
ity of the numerical solution,1 and has been the topic of considerable research. The need for such accurate
boundary specification has been underscored in recent years stemming from increased interest in applying
higher-fidelity methods (DNS, LES, etc.) in conjunction with high–order low–dissipation numerical schemes
to realistic flow configurations.

One of the most popular choices for specifying these boundaries is to use characteristic–based boundary
conditions2–7 where the linearized flow field at the boundaries is decomposed into characteristic waves using
either one–dimensional2–5 or multi–dimensional6,7 Riemann approximations. Outgoing characteristics from
the domain are taken from the interior, while only the incoming characteristics into the domain are specified
by the boundary conditions. For unsteady simulations, time–dependent boundary information may not
be available. However, not specifying any incoming characteristics makes the problem ill-posed. In such
situations, an approach using an ad–hoc parameter to force the solution back to some mean state renders
the solution stable while allowing small reflections.5 In general, characteristic conditions work reasonably
well when the flow direction is normal to the boundary, but reflect spurious energy otherwise.

An alternative to characteristic-based boundary conditions is to add additional “buffer” regions that
augment the main computational domain near the artificial boundaries, and solve different sets of equations
in the buffer regions in order to minimize acoustic reflections. One approach involves modeling the pressure
fluctuations as acoustic waves propagating in the far–field relative to a single noise source inside the buffer
region.8–10 This approach treats the vorticity–induced pressure fluctuations in the same manner as the
acoustic waves. Another popular approach, often referred to as the “sponge layer” technique, attempts to
dampen the flow perturbations by introducing artificial dissipation in the buffer region.11 Although the
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artificial dissipation removes all perturbations inside the sponge layer, incoming waves are still reflected
from the interface boundary between the computational domain and the sponge layer. The effect of these
reflections can be somewhat mitigated by appropriately selecting the strength of the artificial dissipation
and the physical extent of the sponge layer.

One of the most promising variants of the buffer region approach is the Perfectly Matched Layer (PML)
technique. The PML technique mitigates spurious reflections from the boundaries and interfaces by damping
the perturbation modes inside the buffer region such that their eigenfunctions remain unchanged. The
technique was first developed by Berenger12 for application to problems involving electromagnetic wave
propagation. It was later extended to the linearized Euler, Euler, and Navier–Stokes equations by Hu and
his collaborators.13–19 The PML technique ensures the no–reflection property for all waves, irrespective of
incidence angle, wavelength, and propagation direction. Although the technique requires the solution of a
set of auxiliary equations, the computational overhead can be justified since it allows use of smaller domain
sizes and can provide better accuracy, and convergence of the numerical solution.

In this paper, the PML technique is developed in the context of a high–order spectral–element Discon-
tinuous–Galerkin (DG) method. The technique is compared to other approaches, such as those based on
using characteristic boundary conditions and sponge layers, for treating the inflow and outflow boundaries
of computational domains. The superiority of the current PML technique is demonstrated for a range of test
cases, viz., acoustic pulse propagation, convective vortex, shear layer flow, low–pressure turbine cascade flow,
and flow over a bluff body. The paper is structured as follows. The PML equations are first derived from the
Navier–Stokes equations, followed by a brief description of the higher–order DG method used here. Results
for the test cases considered are then presented, and success and failure modes of the PML technique are
identified. The nonlinear instabilities arising in the PML domain for large perturbations are then addressed,
followed by some concluding remarks.

II. Theory

We first consider the derivation of the one-dimensional (without loss of any generality) x1-layer PML
equations using the conservative form of the compressible nonlinear Navier–Stokes equations:

u,t + Fi,xi = 0, (1)

where u = {ρ, ρuj , ρE} are the conservative variables, and Fi is the total flux. Here, ρ, uj , E = p
(γ−1)ρ +

1
2ujuj , p, and γ are the density, velocity, total energy, pressure, and specific heat ratio, respectively. The
conservative state, u, can be partitioned into a mean state, u, and a perturbation, u′.The mean state, u, is
a solution of the steady Navier–Stokes equations and is hereafter referred to as the target state. It follows
from the definition of u that:

Fi,xi = 0, (2)

where Fi = Fi(u). Note that the equality in equation (2) can be relaxed with minimal effect on the final
solution.17,18 The equations for u′ can then be derived by subtracting equation (2) from equation (1):

u′,t + (Fi − Fi),xi = 0. (3)

Following Berenger12 and Hu,13,14 the u′ variables are split as u′ = u′1 +u′2 +u′3 to rewrite equation (3) as:

u′1,t + (F1 − F1),x1 = 0, (4a)

u′2,t + (F2 − F2),x2
= 0, (4b)

u′3,t + (F3 − F3),x3
= 0. (4c)

Performing a Fourier transform on equation (4) yields:

(−iω)ũ′1 + (F̃1 − F̃1),x1
= 0, (5a)

(−iω)ũ′2 + (F̃2 − F̃2),x2 = 0, (5b)

(−iω)ũ′3 + (F̃3 − F̃3),x3
= 0, (5c)
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where ũ is the Fourier transform of (u). In order to apply the PML layer only in the x1 direction, the
spatial derivative 1

∂x1
is transformed to 1

(1+ iσ
ω )∂x̆1

, where σ is the absorption coefficient. To ensure that

there are no reflections at the interface, σ can vary only in the x1 direction for the x1 PML layer. With
the transformation, equation (5) is rewritten as (with the accents on the independent variables removed for
convenience):

(−iω)(1 +
iσ

ω
)ũ′1 + (F̃1 − F̃1),x1

= 0, (6a)

(−iω)ũ′2 + (F̃2 − F̃2),x2
= 0, (6b)

(−iω)ũ′3 + (F̃3 − F̃3),x3 = 0. (6c)

Defining an auxiliary variable Q as u′1, and adding the equations (6a–c), the “split” form of the PML
equations for the perturbed variables u′ is:

(−iω)ũ′ + (F̃i − F̃i),xi + σQ̃ = 0, (7a)

(−iω)Q̃ + (F̃1 − F̃1),x1
+ σQ̃ = 0. (7b)

Reverting equation (7) back to the physical coordinate system, and adding equation (7a) to equation (2),
the Navier–Stokes PML equations for the x1–layer are:

u,t + Fi,xi + σQ = 0, (8a)

Q,t + (F1 − F1),x1
+ σQ = 0. (8b)

It is important to note that the PML equations (8) do not reflect any waves at the interface for electro-
magnetics,12 and linear Euler problems13 for the continuous equations. However, Hu13 noted very small
reflections from the interface for the discretized equations.

Hu14 also showed that the PML equations (8) may become unstable for certain perturbations, even for
the linear Euler case with constant mean flow. This instability arises due to the misalignment of the group
and phase velocities of the acoustic waves.14,16,17 By applying a variable transformation: t̆ → t + βx1,
x̆i → xi, where β = u

c2−u2 and c =
√
γp/ρ is the speed of sound, the group and phase velocities become

perfectly aligned for the linearized Euler case with uniform flow. However, it is difficult to determine the
dispersion relation in the case of more general flows, and Hu17 reported that β ≈ ub

c2b−u
2
b
, where ub, cb are

the bulk velocity and speed of sound, is a good approximation although this correction can become unstable
for large σ.17 With this given transformation, equations (8) become (with the accents on the independent
variables removed for convenience):

u,t + Fi,xi + σβ(F1 − F1) + σQ = 0, (9a)

Q,t + (F1 − F1),x1
+ σβ(F1 − F1) + σQ = 0, (9b)

The PML equations (9) also become unstable in the presence of crossflow,20 since the group and phase
velocities become misaligned for vorticity and entropy waves. Using x̆1 → x1, x̆2 → x2−Vot, x̆3 → x3−Wot,
and t̆ → t, where Vo and Wo are the bulk velocities in x2 and x3 directions respectively, improves the
stability of PML equations (9) in the presence of crossflow. Applying this transformation, equations (9)
become (again, without the accents on the independent variables):

u,t + Fi,xi + σβ(F1 − F1) + σQ = 0, (10a)

Q,t + (F1 − F1),x1
+ V0Q,x2

+W0Q,x3
+ σβ(F1 − F1) + σQ = 0, (10b)

Note that the final form of the PML equations (10) are fully nonlinear.
Although the PML equations (10) are derived for the Navier–Stokes equations, we have omitted the

viscous flux contribution. Strictly speaking, one has to solve another set of auxiliary equations in order to
apply the PML technique to the Navier–Stokes equations.18 We have not included these additional equations
for now.

One major issue with regard to implementing any PML approach for subsonic flows is in the specification
of the target state. At the inflow boundaries, the reservoir state is generally known, but at the outflow
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boundaries the state values are not all known a priori. The complete state needs to be inferred and specified
at the outflow boundaries in order to employ the buffer region approach, and the accuracy of the final
solution will depends on the quality of this assumption. The approach used here is to perform a precursor
simulation without any PML, and then use the mean solution from this simulation as the target state for
successive simulations incorporating the PML technique.

III. Numerical method

The spectral-element DG solver used in this paper is described in this section. The spatial domain, Ω, is
partitioned into non–overlapping hexahedral elements, κ, while the time is partitioned into time intervals (or
time–slabs), In = [tn, tn+1]. After defining Vh =

{
w,w|κ∈ [P(κ× I)]5

}
, the space-time finite-element space

is discretized using piece-wise polynomial functions in both space and time. The governing equations (10)
are written in weak form as:

(11a)

∑
κ

{∫
I

∫
κ

[−(w,tu + w,xiFi) + w(σβ(F1 − F1) + σQ)]

+

∫
I

∫
∂κ

w(F̂ I
i ni + F̂ V

i ni) +

∫
κ

[w(tn+1
− )u(tn+1

− )−w(tn+)u(tn−)]

}
= 0,

(11b)

∑
κ

{∫
I

∫
κ

[−(w,tQ + w,x1(F1 − F1) + w,x2V0Q + w,x3W0Q) + w(σβ(F1 − F1) + σQ)]

+

∫
I

∫
∂κ

w(F̂ I
1 n1 − F̂

I

1n1 + ̂F V
1 n1 −

̂
F
V

1 n1)

+ w(V0n1 +W0n2)Q̂ +

∫
κ

[w(tn+1
− )Q(tn+1

− )−w(tn+)Q(tn−)]

}
= 0,

where the second and third integrals arise due to the spatial and temporal discontinuity of the basis functions,

respectively. Here, F̂ I
i ni, F̂

V
i ni , and (V0n1+W0n2)Q̂ denote single-valued numerical flux functions approxi-

mating the inviscid, viscous and Q fluxes at the spatial boundaries of the elements, respectively. In this work,
the inviscid flux is computed using the Ismail and Roe flux,,21 the viscous flux is computed using the method
of Bassi and Rebay,22 and the Q fluxes are computed using a fully upwind method. We use an entropy vari-

able formulation, where we seek a solution of the form u = u(v), where v =
{

s
γ−1 + γ+1

γ−1 −
ρE
p ,

ρuj
p ,−ρp

}
is

the vector of entropy variables and s (= log(p/ργ)) is the entropy. We seek a solution (v,Q) with v,Q ∈ Vh
that satisfies the weak form equation (11) for all w ∈ Vh. The space Vh is spanned by the tensor product
of 1D nodal Lagrange basis functions defined at the Gauss–Legendre points. Integrals in equation (11) are
approximated with a quadrature rule using twice the number of quadrature points as solution points in each
coordinate direction in order to minimize quadrature errors. The resulting nonlinear system of equations is
then solved using a preconditioned Jacobian–free Newton–Krylov solver.23,24

For simulations that incorporate buffer regions, there are two adjustable parameters, the absorption coef-
ficient, σ, and the buffer width. These parameters control the reflections from the interfaces and boundaries
for the sponge layer cases, and the reflections from the boundaries for the PML cases. For the PML tech-
nique, the stability of the numerical simulation is also a function of σ. One expects that Q will be zero at a
boundary since the flow solution here should match the target state, and will vary at the interface depending
on the incoming disturbances from the domain of interest. Thus, non–zero values for Q at a boundary are an
indication that the absorption coefficient and/or buffer width for the PML may be too small. The absorption
coefficient, σ, is set to zero in the domain of interest for the sponge layer and PML simulations. Normally σ
is increased from a value of zero at the interface to a desired value inside the buffer layer using some power
law for finite–difference and finite–volume solvers. However, since discontinuities can be handled efficiently
in the DG approach, a constant value for σ is used in the buffer layers in the present study.15

IV. Computational results

In order to assess and demonstrate its capabilities the PML technique was applied to the following five
test cases:
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A. Propagation of an acoustic pulse in an inviscid fluid,

B. Convection of an isentropic vortex,

C. Two-dimensional shear flow,

D. Flow through low–pressure turbine cascades,

E. Flow over a bluff body (i.e., a solid block).

The flow physics in test case A is primarily acoustic in nature, in test case B is vortical, while in test case C
it is influenced by both vorticity and acoustics. These three test cases have been extensively studied by Hu
and his coauthors.13–19 The remaining test cases, D and E, demonstrate the potential of the PML technique
when applied to realistic flow problems. For all test cases, results obtained using the PML technique are
compared to two other popular boundary treatment techniques: characteristic boundary conditions without
any buffer regions,1,5 and a sponge layer approach1 in the x1 direction. All the solutions presented here are
obtained using a spatial 8th–order and temporal 4th–order DG scheme. For the remainder of the paper,
characteristic boundary condition simulations will refer to simulations without any buffer regions. For these
simulations, the computational domain comprises only the domain of interest, whereas for the sponge and
PML simulations buffer regions were added on both sides of the domain of interest (Figure 1) and the
same characteristic boundary conditions were used at the buffer region boundaries (hereafter referred as
boundaries). In order to quantify the behavior and performance of the three different artificial boundary
treatments, additional simulations with extended domains were also performed for the first two test cases,
since analytical solutions are available for these cases for comparison; these are referred to as infinite domain
simulations.

Figure 1. Schematic of the computational domains for simulations with (a) characteristic, and (b) sponge and
PML boundary conditions.

The sponge layer technique can be simulated using equations (10), by including only σ(u−u) in equations
(10a), without having to solve any equations (10b) for the auxiliary variables Q. The auxiliary variables Q
were initialized to zero for the PML layer simulations. Boundary conditions (both at the boundary and the
interface) for the Q variable in the x1 direction for the x1–PML layer are not needed (refer to equations
(10b)).
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A. Acoustic pulse

An acoustic pulse in an inviscid fluid was simulated in the domain, −3 ≤ x1 ≤ 3; −7.5 ≤ x2 ≤ 7.5, using
12 and 30 elements in the x1 and x2 directions, respectively. The initial conditions were prescribed as: ρ∞,
uj∞ = 0, p = p∞ + p∞

1000 exp−25 log(2)(x2
1+x2

2). Far–field and periodic boundary conditions were used in the x2

and x3 directions, respectively. For simulations with buffer regions, two domains of unit width were added
to the left of x1 = −3 and to the right of x1 = 3 using 2 elements in the x1 direction. The target states in
the buffer region were constructed using ρ∞, uj∞, and p∞. The absorption coefficient was chosen as σ = 1
for both the sponge layer and PML simulations. The parameters β, V0, and W0 were set to zero as there
was no flow in this case for the PML simulations.

Figure 2. Temporal evolution of the error in pressure distribution between the finite and infinite domain
simulations of an acoustic pulse.

The temporal evolution of the root–mean–square error in the pressure distribution between the finite and
infinite domain simulations using the three different boundary condition approaches shows that the PML
technique performs the best in terms of minimizing any spurious reflections (Figure 2). The simulation
with the characteristic boundary condition shows strong reflections (Figure 3-a) from the artificial boundary
depending on the incidence angle of the disturbance. The strength of the spurious reflections is low when the
incident disturbance is almost normal to the boundary, and increases with the incidence angle. Reflections
from the interface can also be seen with the sponge layer (Figure 3-b). For the PML simulations (Figure
3-c), almost no spurious reflections can be observed.

B. Isentropic vortex convection

For the second test case, we consider an isentropic vortex in an inviscid fluid convecting in the domain
−3 ≤ x1 ≤ 3; −7.5 ≤ x2 ≤ 7.5, using 12 and 30 elements in the x1 and x2 directions, respectively. The
initial conditions were prescribed as:

δu1 = −M∞Γ
x2

R
exp−

x21+x22
2 , (12a)

δu2 = −M∞Γ
x1

R
exp−

x21+x22
2 , (12b)
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Figure 3. Simulated pressure distribution (in color) and the difference in pressure distributions between
the finite and infinite domain simulations (black–white contours) of an acoustic pulse at time =6 with (a)
characteristic, (b) sponge, and (c) PML boundary conditions for (i) time = 2, and (ii) time = 6. Only the
domain of interest without the buffer regions is shown in (b–c).

δ(
p

ρ
) =

1

2

γ

γ − 1
M2
∞Γ2 exp−(x2

1+x2
2), (12c)

where M∞ is the convecting speed of the vortex, Γ = 1
5 is the vortex strength, and R = 0.05 is the

characteristic radius. Two different reference states were considered to test the linear stability of the PML
technique for flows that were either unidirectional or oblique in the mean. The first case, with flow only in
the x1 direction, i.e., ρ∞, u1∞ = M∞ = 0.1, u2∞ = 0, and p∞, will be referred to as Case I; the second,
with flow in both the x1 and x2 directions, i.e., ρ∞, u1∞ = u2∞ = 0.5, and p∞, will be referred to as Case
II. In Case I, buffer domains of unit width were added to the left of x1 = −3 and to the right of x1 = 3
using 2 elements in x1 direction. In case II, buffer domains of width=1 (2 elements in the x1 direction) and
buffer width=2 (4 elements in the x1 direction) were added to the left of x1 = −3 and to the right of x1 = 3,
respectively. Periodic boundary conditions were used in both the x2 and x3 directions. The target states at
the buffer region were constructed using ρ∞, uj∞, and p∞. The absorption coefficient was chosen as σ = 1
for both the sponge layer and the PML simulations. The PML parameter β was calculated as described in
Section II. For Case I we set V0 = 0 and W0 = 0, and for Case II we set V0 = 0.5 and W0 = 0. An artificial
boundary condition can be considered ideal if the vortex maintained its shape without any distortion as it
approached and passed through the boundary x1 = 3.

For Case I, the PML simulation results in the smallest root-mean-square error in the pressure distribu-
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Figure 4. Temporal evolution of the error in pressure distribution between the finite and infinite domain
simulations for a vortex convecting in the x1 direction.

tion relative to the infinite domain simulation (Figures 4). The simulation using characteristic boundary
conditions shows strong variations in the shape of the vortex as it passes through the plane of the boundary
(Figures 5–a) and low and high pressure regions can be seen developing as the vortex propagates through
the boundary. For the sponge layer simulation (Figures 5–b), the shape of vortex is even more distorted
than when the characteristic boundary condition is used. The results with the PML simulation are clearly
superior, and show almost no spurious low or high pressure regions and no variation in the shape of the
momentum contours (Figures 5–c). However, similar to the observations by Hu,14,17 numerical instabilities
were observed when the PML simulations were performed using very large values of σ.

For Case II, the PML simulations were stable only when V0 was set to the bulk velocity in the x2 direction,
as observed by Parrish & Hu.20 The results with the PML are superior to those obtained with the other
boundary conditions for this case as well (Figure 6). The root-mean-square error in pressure is higher overall
for Case II in comparison to Case I since the vortex strength is higher. Within the PML region all acoustic

perturbations are damped exponentially with the exponent taking the form − σ(M+cosφ)
(1−M2)(1+M cosφ)x1; and the

vorticity and entropy waves are damped exponentially as − σ
(1−M2)M x1, where M is the characteristic velocity

in the x1 direction and φ is the angle between the wave–front normal vector and the x1 direction.14 In order
to account for this, the width of the buffer region was doubled for the Case II simulation. Strong acoustic
perturbations are noticed for the characteristic boundary condition and sponge simulations in comparison
to the PML simulations (Figure 7). These results are similar to those obtained by Parrish & Hu.20
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Figure 5. Temporal evolution of the pressure distribution (in color) and the difference in the pressure distri-
butions between the finite and infinite domain simulations (in black–white contours) for a vortex convecting
in the x1 direction with (a) characteristic, (b) sponge, and (c) PML boundary conditions. In (i) the vortex is
far from the x1 = 3 plane, time = 10 (ii) the vortex is about to cross the x1 = 3 plane, time = 20; (iii) half of
the vortex has crossed the x1 = 3 plane, time = 30; and (iv) the entire vortex has crossed the x1 = 3 plane,
time = 40. Only the domain of interest without the buffer regions is shown in (b–c).
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Figure 6. Temporal evolution of the error in the pressure distribution between the finite and infinite domain
simulations for a vortex convecting in both the x1 and x2 directions.
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Figure 7. Temporal evolution of the pressure distribution (in color) and the difference in the pressure distri-
butions between the finite and infinite domain simulations (in black–white contours) for a vortex convecting
in both the x1 and x2 directions with (a) characteristic, (b) sponge, and (c) PML boundary conditions. In (i)
the vortex is about to cross the x1 = 3 plane, time = 2.8; (ii) half of the vortex has crossed the x1 = 3 plane,
time = 5.6; (iii) the entire vortex has crossed the x1 = 3 plane, time = 8.4; and (iv) after the entire vortex
has crossed the x1 = 3 plane, time = 10.56. Only the domain of interest without the buffer regions is shown in
(b–c).
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Figure 8. Contours of the vorticity magnitude at different time instants for the shear layer simulations with
(a) characteristic, (b) sponge, and (c) PML boundary conditions. Only the domain of interest without the
buffer regions is shown in (b–c).

C. Shear layer

We next consider the phenomenon of inviscid vortex roll–up in a 2–D shear layer flow induced by the Kelvin–
Helmholtz instability in the computational domain −1 ≤ x1 ≤ 9; −1 ≤ x2 ≤ 1 with 25 elements each in the
x1 and x2 directions. The initial conditions were prescribed as:

ρ

u1

u2

p

 =


ρ(x2)

U(x2)

0
1
γ

 (13)

where

U(x2) =
1

2
[(U1 + U2) + (U1 − U2) tanh(

2x2

δ
)], (14a)

ρ(x2) =
1

T1
U−U2

U1−U2
+ T2

U1−U
U1−U2

+ γ−1
2 (U1 − U)(U − U2)

, (14b)
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with U1 = 0.8, U2 = 0.2, δ = 0.4, T1 = 1, T2 = 0.8. In order to excite the Kelvin–Helmholtz instability, a

source function of the form 5 sin(π2 t) exp− log(2)
(x1+0.5)2+(x2−0)2

0.032 was included in the energy equation. Char-
acteristic and periodic boundary conditions were used in x2 and x3 directions, respectively. For simulations
with both the sponge layer and the PML, buffer regions of width 0.5 (1 element in x1 direction) were added
at x1 ≤ −1 and x1 ≥ 9. A value of σ = 10 was used for both simulations.

Figure 9. Contours of the pressure at different time instants for the shear layer simulations with (a) charac-
teristic, (b) sponge, and (c) PML boundary conditions. Only the domain of interest without the buffer regions
is shown in (b–c).

For these simulations, the target states in the buffer regions were constructed using the initial conditions.
Following Hu,17 a value of β = 1/1.4 was used, which is close to the value of β calculated using the x1 bulk
velocity. The quantities V0 = 0, W0 = 0 were prescribed since there were no cross flow–components for the
target state in the buffer regions.

The choice of characteristic, sponge, or PML boundary conditions seems to have minimal effect on the
variation of the vorticity magnitude as the vortex passes through the x1 = 9 plane (Figure 8). However, the
effect of the boundary condition is more noticeable in plots of the pressure for the same periods (Figure 9).
With both the characteristic and the sponge boundary condition strong spurious reflections are seen. These
reflections are barely noticeable for the PML case. These spurious reflections are also observed in the value
of the mean (time-averaged) pressure. Figure 10 shows the time-averaged pressure for the characteristic
and PML boundary conditions obtained by averaging over two domain flow-through times. Reflections
contaminate the flow and produce low pressure regions near the outflow boundary with the characteristic
boundary condition. With the PML technique, the mean pressure varies smoothly except in a very localized
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region close to the x1 = 9 plane. The effect of these localized mean pressure variation is not noticed over
the bulk of the main computational domain.

Figure 10. Time-averaged pressure (averaged over two domain flow-through times) for the shear layer simu-
lations with (a) characteristic, and (b) PML boundary conditions. Only the domain of interest without the
buffer regions is shown in (b).

As mentioned in Section I, the complete state of the flow at the outflow boundary in most practical flows
is often not known. For these cases, a target state at the outflow buffer region needs to be constructed. We
have tested different approaches for this purpose. One approach is to set the target state from the initial
condition, but this may not be entirely accurate for the present test case where the shear layer thickens due to
vortex roll–up. Another approach is to conduct a precursor simulation with the outflow buffer region excluded
to gather mean flow statistics, and to then use this computed mean flow as a target state for subsequent
simulations with the buffer region included. Although the constructed target state may be corrupted by
spurious numerical reflections, this approach still provides reasonable mean flow criteria (equation (2)), and
is likely to be a better choice than any other crude guess that is based on, say, conserving the mass flow rate.
No difference in the numerical results for this test case were noticed using these two different target flows
for the PML simulations.

D. Low–pressure turbine cascade

In addition to the above canonical flow simulations, we have applied the PML technique to simulate flows
in realistic configurations, viz., subsonic flows in low–pressure turbine cascades. We first consider the well-
documented lightly loaded T106A cascade with Re = 60000, based on isentropic exit speed and chord length,
and in the absence of any inflow turbulence. Details of the geometry and flow configuration can be found
in Garai et al.25 The h − p convergence study was performed by Garai et al.,25 and the results using the
finest elements are presented here. Buffer regions extending about one quarter axial–chord length (with two
elements in x1 direction) were added at the inflow and outflow boundary. The absorption coefficient, σ,
was chosen as 10. At the inflow buffer region, the target state was set to the inflow condition. As the full
state at the outflow was not known from the experimental data, a precursor simulation spanning 4 domain
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flow–through times was first performed, and mean flow statistics were gathered for the last 2 domain flow–
through times. This calculated mean flow was then used as the target state for the outflow buffer region for
the simulations using both the sponge layer and PML technique. Periodic boundary conditions were used in
the pitch and span directions. The PML parameters, β, V0, and W0, were calculated using inflow conditions
for the inflow PML, and using the calculated mean from the precursor simulations for the outflow PML.

Figure 11. Contours of the total pressure difference (
pt,inflow−pt
pt,inflow

) for the T106A low–pressure turbine cascade

simulation with (a) characteristic, and (b) PML boundary conditions. Only the domain of interest without
the buffer regions is shown in (b).

The variation of the total pressure with respect to the inflow total pressure is plotted for both the char-
acteristic and the PML boundary condition in Figure 11. Spurious reflections from non–normal disturbances
incident on the inflow plane are clearly evident in the simulation with characteristic boundary conditions
(Figure 11–a). These spurious reflections are very slow to die down since they reflect back and forth between
the inflow boundary and the airfoil. These reflections tend to increase the total pressure with respect to
the inflow condition, and affect the vortex shedding process at the stationary state. On the other hand, the
PML boundary condition damps out the numerical acoustic disturbances with no spurious reflections (Fig-
ure 11–b), and the total pressure equilibrates with the inflow condition when the stationary state is realized.
Application of the PML technique changes the span and temporal averaged surface pressure distribution
marginally, in a very small region close to the trailing edge (Figure 12).

The second low–pressure turbine cascade considered is the T106C configuration where the airfoil geom-
etry is the same as the T106A case but the airfoil pitch is increased to achieve higher loadings. In this
configuration, a large separation bubble develops on the aft portion of the suction side that must be ac-
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Figure 12. Cp distribution for the T106A airfoil configuration.

Figure 13. Isentropic Mach number distribution for the T106C airfoil configuration.

curately captured. We consider the Re = 80000 case for which both experimental and other DNS results
are available in the literature. Note that the operating condition for the T106C case is higher than for the
T106A case. Elements similar to the T106A case were used, and marginal changes in the surface pressures
averaged in both span and time were noticed when either spatially 4th or 8th–order elements were used.
As a first attempt, we have used the same buffer strength and length as before. Numerical instabilities
(non–zero Q) were noticed at the outflow PML boundaries when the simulations were run for long time
intervals (about 5 domain flow–through times). However, these instabilities did not occur when the buffer
strength was increased to σ = 50 even when the simulations where run for 6 domain flow–through times.

The simulation results using the characteristic boundary condition for the T106C configuration are com-
parable to those documented in the 2nd workshop on high order methods,26 and in Hillewaert et al.27 When

the PML technique is used the isentropic Mach number (Mais =
√

2
γ−1 [(pt1p )

γ−1
γ − 1]) distribution is closer

to the experimental data (Figure 13). The present simulations overestimate the surface pressures in the
fore region of the suction side. However, these results are consistent with those obtained by Hillewaert et
al.27 who conjectured that this mismatch in the pressures could be due to the incorrect flow angle and
blade stagger angle reported in the experiments. Downstream of the suction peak in the laminar separation
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Figure 14. Contours of density gradient (
√

∂ρ
∂x

2
+ ∂ρ
∂y

2
+ + ∂ρ

∂z

2
) for the T106C low–pressure turbine cascade

simulation with (a) characteristic, and (b) PML boundary conditions. Only the domain of interest without
the buffer regions is shown in (b).

bubble region, the results from the present simulation are in better agreement with the experiment than
the results of Hillewaert et al.27 For the simulations using the characteristic boundary condition, spurious
reflections overwhelm the physical acoustic waves, and the size of the suction-side laminar separation bubble
is diminished. With the PML boundary condition there are no spurious reflections and only the physical
acoustic waves emanating from vortex shedding at the trailing edge can be noticed in Figure 14.

E. DNS of flow around a solid block

The current PML technique was also used to perform DNS of flow around a solid block in support of wind
tunnel experiments being performed in the Fluid Mechanics Laboratory at NASA Ames Research Center.
The Mach number and the Reynolds number in these simulations were 0.45 and 5000, respectively. The wind
tunnel experiment is described in detail in Roozeboom et al.28 Figure 15 plots the instantaneous iso-contours
of total pressure around the solid block and in its wake along the centerline of the wind tunnel obtained using
both the characteristic and PML boundary conditions. The PML technique reduces the spurious reflections
from the outflow boundary that can be otherwise be clearly seen when the characteristic boundary condition

17 of 23

American Institute of Aeronautics and Astronautics Paper 2016-1338



AIAA 2016-1338

is used.

(a) Characteristic boundary condition

(b) PML

Figure 15. Total pressure and iso-contours of Mach number for flow over a solid block. Only the domain of
interest without the buffer regions is shown in (b).

Unfortunately, the simulation using the PML boundary condition became unstable after it had progressed
for a long time interval (after two domain flow–through times), as the value of the auxiliary PML variable
(Q) grew unbounded at the edge of the boundary layer in the outflow PML region. In this region of the
flow the instantaneous velocity perturbations increased in magnitude to several times the mean velocity and
even reversed flow was observed in the boundary layer. This behavior could not be prevented even when a
wide range of σ values from 1 to 100 were used.
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V. Stability of the PML equations

The stability of the PML equations can be derived from linear stability theory with uniform flow,14 as
mentioned in Sections II and III. We believe that the failure of the PML simulations over long time intervals
for the T106C cascade (using a lower value of σ) and the flow around a solid block is due to strong nonlinear
effects. In this section we examine the nonlinear behavior of the PML equations in the presence of large
perturbations by revisiting the convecting isentropic vortex test case but for large perturbations. The results
shown are at a freestream Mach number of 0.1 and using three different vortex strengths corresponding to
velocity perturbations that are approximately 10%, 100%, and 500% of the freestream value. Figure 16 shows
the evolution of x-momentum as the vortex convects through the PML region. When the vortex strength
is weak, the PML technique damps the vortex as it travels through the buffer region and reflections are
minimized. The state returns to the target value while the Q-variable returns to zero once the vortex has
passed through the domain. When the vortex strength increases to 100% of the free-stream value the vortex
is damped as it travels through the PML but a large perturbation in the state remains undamped in the
PML region for very long times. In practical simulations, further flow perturbations would follow that could
amplify the undamped region leading to instability. However, it is interesting to note that in the non-PML
region of the domain and, in particular, at the exact PML interface, the state returns to the freestream
value. When the vortex strength is increased further, it appears that this remaining perturbation from the
transit of the vortex leads to an instability and eventually causes the simulation to blow up.

To further understand the issue, we track the evolution of the conservative state, u, auxillary state Q,
and the terms involved in the evolution of u and Q in the PML region. Figure 17 presents the evolution
of the terms corresponding to the x-momentum at quadrature point in the middle of the first element just
inside the PML region. For the small vortex we can see when Q tracks u − ū both u and Q return to the
free-stream value. For the vortex with strength of 100% of the free-stream value, u and Q (corresponding
to the solutions plotted in Figure 17) have non-zero values after the vortex has transited. u,t and Q,t are
essentially zero since the term σQ is balanced by Fx,x. For the strongest vortex case, Q remains strong
enough in the PML region to cause an instability and lead to the eventual failure of the simulation.

One potential approach to addressing the nonlinear stability of the PML equations could involve addi-
tional forcing to ensure that u and Q return to their nominal values, ū and 0, respectively. However, such
additional forcing would necessarily destroy the non-reflective property of the PML. Another alternative
could involve some form of quadratic penalization such that the regular PML behavior is essentially recov-
ered for small perturbations. We have been experimenting with several such formulations but are yet to find
a generally applicable solution.
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(a) 10% vortex, t = 0.0 (b) 100% vortex, t = 0.0 (c) 500% vortex, t = 0.0

(d) 10% vortex, t = 3.75 (e) 100% vortex, t = 3.75 (f) 500% vortex, t = 3.75

(g) 10% vortex, t = 7.5 (h) 100% vortex, t = 7.5 (i) 500% vortex, t = 7.5

(j) 10% vortex, t = 11.25 (k) 100% vortex, t = 11.25 (l) 500% vortex, t = 11.25

(m) 10% vortex, t = 15.0 (n) 100% vortex, t = 15.0 (o) 500% vortex, t = 15.0

Figure 16. Isentropic vortex convection through the PML domain. The solid line denotes interface between
the fluid and the PML domain.
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(a) u, 10% vortex (b) u, 100% vortex (c) u, 500% vortex

(d) Q, 10% vortex (e) Q, 100% vortex (f) Q, 500% vortex

(g) u-balance, 10% vortex (h) u-balance, 100% vortex (i) u-balance, 500% vortex

(j) Q-balance, 10% vortex (k) Q-balance, 100% vortex (l) Q-balance, 500% vortex

Figure 17. Time history of x-momentum state and PML variable within the PML domain for a convecting
isentropic vortex.
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VI. Concluding Remarks

The PML technique implemented here for a high–order spectral–element DG method shows promise in ac-
curately representing the inflow and outflow boundaries for unsteady simulations in truncated computational
domains. Since the PML technique is non-reflective only in the continuous sense, some small reflections are
noticed from the interface in the present discrete simulations. The nonreflective and absorptive properties
of the PML are independent of the frequency and the angle of the waves. For the test cases considered, the
performance of the PML is superior to any other method when the perturbations are small. Although the
PML technique requires the solution of additional equations when compared to the characteristic or sponge
boundary conditions, the extra computational work is justified by the accurate propagation of acoustic en-
ergy in the domain. The results for the turbine cascade are particularly encouraging. The lack of proper
non–reflecting inflow and outflow boundary conditions are a major issue in such internal flows where spurious
acoustic reflections from the boundaries can often swamp the solution and lead to poor (or non) convergence
and inaccurate results. The nonlinear stability of the PML equations remains an open issue for flows with
large perturbations and will need to be addressed before the technique can be broadly applied.
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